Complexity of Primal Methods in Integer Programming

نویسندگان

  • Andreas S. Schulz
  • Robert Weismantel
چکیده

One common approach to solve optimization problems is the primal method. One starts with a feasible point and then successively produces new feasible solutions with better objective function values until an optimal solution is reached. From an abstract point of view, an augmentation problem is solved in each iteration, i.e., given a feasible point find an augmenting vector, if one exists. The driving question behind most of the results in this paper on integer programming is whether the ability to efficiently solve some kind of augmentation problem already implies an integer linear programming problem to be efficiently solvable as well. We give various (partial) answers to this question.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primal-dual path-following algorithms for circular programming

Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...

متن کامل

Primal separation algorithms

Given an integer polyhedron PI ⊂ R, an integer point x̄ ∈ PI , and a point x∗ ∈ R \ PI , the primal separation problem is the problem of finding a linear inequality which is valid for PI , violated by x∗, and satisfied at equality by x̄. The primal separation problem plays a key role in the primal approach to integer programming. In this paper we examine the complexity of primal separation for se...

متن کامل

Dynamic Subgradient Methods

Lagrangian relaxation is commonly used to generate bounds for mixed-integer linear programming problems. However, when the number of dualized constraints is very large (exponential in the dimension of the primal problem), explicit dualization is no longer possible. In order to reduce the dual dimension, different heuristics were proposed. They involve a separation procedure to dynamically selec...

متن کامل

A path following interior-point algorithm for semidefinite optimization problem based on new kernel function

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

Dualistic computational algebraic analyses of primal and dual minimum cost flow problems on acyclic tournament graphs

To integer programming problems, computational algebraic approaches using Gröbner bases or standard pairs via the discreteness of toric ideals have been studied in recent years. Although these approaches have not given improved time complexity bound compared with existing methods for solving integer programming problems, these give algebraic analysis of their structures. In this paper, we focus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998